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We consider the plane and axisymmetric problems of flow of a uniform hyper-
sonic stream of viscous perfect gas past a blunt-nosed body in the case when
the ordinary boundary-layer theory 1s inadequate, and higher approximations
in the solution of the Navier-Stokes equations are required. 2By means of the
well-known method of inner and outer expansions we obtain thé conditions on
the bow shock wave for the second approximation to the solution outslde the
boundary layer (the first approximation being the
inviscid flow). We consider the boundary-value prob~
lem arising in the determination of the second appro-
ximation.

In flight at high altitude with very great speed
the continuum theory becomes invalid, and 1t 1s
necessary to use the kinetic theory of gases. How-
ever, so long as the Knudsen number remains less
than 0.15, most aerodynamic problems can be treated
by means of the Navier-Stokes equations taking 1nto
account slip at the surface of the body {see the
works of Street, Sherman and Talbot, and others in
[l]). Under these conditions the boundary-layer
theory 1s inadequate, and the next approximation to
the solution of the Navlier-Stokes equatlons must be
considered. A systematic review of second-order
effects 1s gilven in the work of Van Dyke [2], who
used the well-known method of inner and outer solu-

Flg, 1 tions. In particular, he found the boundary condl-
tions on the body for the determination of the second
approximation outside the boundary layer. In the present work we obtain the
boundary conditions on the bow shock wave for the second approxlmation by
constructing the asymptotic representations of the solutions of the Navier-
Stokes equations outside and inside the region of the bow wave and their
matching.

1., We conslder the plane or axisymmertic problem of hypersonlc flow of
a uniform stream of viscous perfect gas past a contour (Fig. 1).

Here A404' is the contour of the body. Reglon 4 1s the boundary layer,
and region 2 the shock wave, which is regarded as a region of large gradilents
of gas properties., We assume that the smooth contour ACA’ consists of
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analytic arcs, the arc of the contour being an analytic curve from point ¢
to the limiting characteristic (see Section 6); the gas is perfect, that is,
its equation of state 1s p = RpT7 where p 1s the pressure, p the density
7 the absolute temperature, and R the gas constant; the specific heats

at constant pressure ¢, and volume ¢, are constant; the internal energy

is e = ¢,T ; the coefflcients of viscosity u and A are functions only
of T ; the Prandtl number ¢ 1s constant; the gas flow is described by
the Navler-Stokes equations; and the flow regime 1s laminar.

We denote the pardmeters of the undisturbed stream by the subscript « ,
s0 that u_ 1is the free-stream Mach number, and U, its speed. For py,x = O
region 2 collapses into the surface (pC’, and region 4 disappears. At hyper-
sonic speeds (qu,jg:i) regions 2 and 4 are always distinct [2], and the
characteristic temperature and enthalpy in reglons 3 and 4 are a:c;* and
U.? respectively; the radius of curvature g4 of the body and the radius of
curvature of the shock wave at the points B and ¢ are of the same order.

We introduce a curvilinear system of coordi-
nates s, n (Fig.2). Here ¢ and n are meas-
ured along the arc pBC and along the normal to
1t. Then if lengths are referred to the guantity
@ , the gas velocity to [, , the pressure to
pwls” s the density to p_, the temperature to
U2 c,l: the entropy and enthalpy of the gas to
e, and Uma respectively, and the coefficients of
viscosity to the value of u at T = U %c, 7,
then the equations of continuity, momontum and

energy, and the equations of state, assume in the cho~-
Flg. 2 sen coordinate system the following form [2]:

i(r + ncos8)puls + [ + kn) (r + ncos 8Ypv], = 0 (t.1)
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p="=207, s=[?—§;@—c—5a—] o w=p(T), A=M(T) (1.6)

Here u and v are the components of velocity in the directions of
increasing s and n respectively; r = r{g) and 8 = 6(8) are the distance
from the angle of inclination of the tangent with the x-axis (Fig.2) for a
point on the arc CBC’, and % = x{a) is its curvature, referred to g~ 1.

The subscripts g and »n on a functional symbol indicate differentiation.
For the plane case J = O and for the sxlsymmetric case J =1 . For a gas
with p = const the small parameter ¢ = _R;%, where R_ 1s the Reynolds
number of the undisturbed stream.

2. To find the solution of the problem ia the boundary layer {region i
in Fig.1l), Van Dyke [ 2] used the method of imner and outer expanslons in the
parameter €. The first terms of the lnner expansion in reglon 4 give the
usual boundary-layer theory, and the next ones account for second-order
effects (in particular, slip and temperature jump at the body surface}. For
the flow In region 3 Van Dyke obtained asymptotlc expansions of the form

f=F0(S,n)+ﬁF1(S,n)+... (f::prprurvaT) (2-1)
To find the coefficients F, 1n (2.1), knowledge of which is required to
improve the results of boundary-layer theory, it 1s necessary to give the



12er B.M. Bulakh

component of veloclty normal to the surface of the body, and relations be-
tween the £ on the bow shock wave CBC’ (Fig.l). .The first is available
in [ 2] and a derivatlon of the conditions on the shock wave follows here-

after.

3. For the solution of this problem we use the method of inner and outer
expansions. In regions 1 and 3 (Fig.l) we use for w, v, P, p and T
expansions of the form (2.1) (the outer solution). Inside the shock wave
(region 2 of Fig.1l) we use expansions of the following sort (the inner solu-

tion): — N . N I | AT - 3
) I=1os M)+ ey (W N) + ..., N = ne (3.1)

This type of expansilon 1s suggested by consideration of the one-dimen-
sional case, and by the expansions (2.1). Thus let us assume that for n- 0

the functlons F,, F,,... are representable asymptotically by power serles;

4

then for small n we obtain from (3.1) (3.2)

f=Wep )+l ()n4 ... 1+ ¢ Fro(9) + Fyu@n+.. 014,
After transforming to ¥ and regrouping terms in the series (3.2) we have
[ = oo (8)] & [Fy ()] + & [Fog () + Foy (5)V] 4. .. (3.3)

This equation must represent s for large ¥ and small n (the matching
conditions).

It follows from (3.3) that the inner expansion has the form (3.1) and
'fON‘ flIV —y 0, N — j: o0 (3.4)

We note that just as for an incompressible fluid [3] the solution of the
Navler-Stokes equations, as is shown by consideration of speclal examples,
consists of two parts, one represented asymptotically by a power serles in

-1

¢ and the other having exponential character with respect to ¢ '. There-
rore the conditions (3.4) may be written more accurately for large N in
the rorm fo(s,¥) ~ Fyo(s) + exponential terms, f,(s,N) ~ F,(e) + exponen-
tial terms, f.(s,¥) ~ F,o(s) + £y, (s)¥ + exponential terms, and so on. (The

runctions ﬁ}lis) are different for ¥ - & o ,)

4, We derive the equations for the coefficients F, in region 1 (Fig.1).
Here 1t 1s convenlent to use Cartesian ccordilnates x, y, z . The expansion
1s taken in the form (4.1)

P m el p Aty L= To(wy D)+ ely (@yd) -+ . .
=vo(v,y, 2t ev;(z,y, 2+ ...

Here V(vx,vy,vz) 1s the velocity vector. Substituting (4.1) into the
equations of continuity, momentum and energy, and taking into account the
fact that the viscous terms do not affect the terms in e , whlle the terms
with subscript zero are constant, corresponding to the uniform stream at
x = — o , we obtain

b= (@ ys ) ey Gy ey
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We reqguire that.

Vi, PPy — 0 as z- —oo (4.3)
In any direction different from the characteristic one (see Section 7).

From (4,2) and (%¥.3) we obtain

av ov v v
. P P1 1y 1x 1z 1x
=2 n_ A v w1z TTix 4.
41 13 T Po 70 o oy Fr 52 0 (4.4)

that 1s, in the plane and axisymmetric cases curl v,= 0 and v, = grad ¢ ,
where ¢ satisfies Equation

02 02 02 1
m2 2% @ ? 2 /
Wt agptToam=0 m=MS—1)" (4.5)

We now show that the condition (%4.3) imposes no limitations on v, ona
finite portion of the arc (B¢’ (Fig.l). This 1s most easily obtailned for
the plane case. Here 3/32 = O and the general solution of (4.5) is
o =g (x +my) +9,(x ~my) , where ¢, and ¢, are determined if v, 1s
given on (OpC’ (Fig.1).

The condition (4.3) 1s satisfied if g (£ 00) =gy’ (£ 00)=0. The prime
indicates differentiation., The same result 1s obtalned also for the axisym-
metric case 1f the solution of (4,5) 1s represented by the well-known formula
of Volterra.

Consequently the condition of decay of disturbances in region 1 as x- —o
(Fig.1) leaves uy,(g,n) and v, (s,n) arbitrary on the finite segment (BC’,
whereas p, and p,are related by the condition (4.4}, which we write 1n the
form

P1/ po = 1P1/ Pos pr = — (uycos0 + v, sin 0) (4.6)
8, We conslder the flow inside the shock wave (region 2 of Fig.l). The

expansions for the solution are taken in the form (3.1)
P=0po(s;N)+epy (s, N)+...., T=7T,(s,N)+ely(s,N)~+...
P=0po(ss N)+ep, (s, N) + ..., = uy (s, N) + eu, (s, N) + ...

v=10y(5, N) +ev,(s,N)+ ..., N = ne? (5.1)
Transforming to ¥ and g 1n Equations (1.1) to (1.4) we obtain the sys-
tem
¢ (pv)y = O (&%, pvu, = (nuy)y + O (D
pvoy + Py = (A + 2”') ”N]N + 0 (82) (5.2)
vaN — WPy = — ot (PTN)N + (}" + 2“) sz + “'uNz + 0 (82)

= [(y —1)/vlpl

The curvature of the shock wave affects only terms of order 2 in (5.2),



1224 B.M. Bulaki

so that the equations for the coeffilcients with subscripts O and 1 are
obtalned Just as in the one-dimensiomal case, if y, = O . We give only the
equations from which it follows that y,y= u,,= O . From the relations

Po¥p = a = const, al,y = (oltyn) s o = Mo (To)
it follows that
Pl = const exp (S‘—? di)
0
Since O # yy,< » , then yg,~ 0 as ¥ ~ £ » only 1n the case y,, =0 .
For wu,,, using u,, =0 , we obtain au),= (Bou,y )y 5 hence under the con~
diticn that u,,~ O as N -+ » 1t follows that u,y=0

We introduce for convenience the symbol {f} = {f)y.,o~ (flyeew - Then
for the one-dimensional problem there exist the well-known relations
o — T v?
o} =0, (et p =0, {T5L45} =0 (5.3)
which follow simply from the conditions

We may therefore expect that the relatlons connectling p,, p;s pos 015
Ups Ups Dp 80 v, as N ~ £ » will be obtained from {5.3) upon substitu~
ting {(5.1) and equating coefficlents of like powers of ¢ . They have the

form
{ugt =0, {Povs® + po} = 0, {’Y_ii %: + %2‘} =0 {pywe} =10 (5.4)
) =0, {20000 + 2801 + P} =0, {ogv + pym) =0
_T_(p __ oy _
{7_1 (PD pog) -+ vavl} =0 (5.5)

The author has also obtained {5.4) and (5.5) directly from the equations
for the gquantities with subscripts O and 1 and the conditions that the
derivatives of those quantlties tend to zero as ¥-t o
(see (3.4)). The relations (5.4) are the usual condi~
tions on a shock wave for an inviscid stream. In the
relations (5.5) the quantities vy, and v, are arbitrary
as N o+~ , but p, and p, are determined in terms of
them by means of (%.6). If we eliminate y, and p, from
{5.5) as ¥ - — « , we obtaln two relatlons connecting
Uy» vy, p, and p, a8 ¥ - + = {n ~ 0), that is, the
desired relatlions on the shock wave.

Omitting the rather easy computatlons, we glve the
final result

uy €080 + 2oy + v/ (v — DI (p1pe™ — popo™?01) =0 (5.6)
1, €088 — pysin By, + (v — vsin @) py + py =0

Flg. 3

All quantitles are taken on approaching CBC! from the slde of region 3
{F1g. 1).
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6. The equations for the coefficients with subsceript 1 in EXpansions
(2.1) in region 3 (Fig,1) are actually obtained from the equations of invis-
cid flow (the viscous terms being of order ¢?) and have the form

[(r + ncos e)j (Pous + P1ug)ls + [(1 + kn) (r + n cos e)j (Povy + P12p)ln=0

Uplys + uluOS) (1 + kn)'l + Volin + U lgn + k (1. +'kn)'1 (uovl + ulv°) '+'
+ (L + kn)™ (0o7'py, — 01007°P,,) = 0

(wovys + wes?y) (1 + £n) + vovin + vy — k(4 + kn)1 2ugn, +
+ PyaPo™ — P1007%P,, = 0

Po [(eT1e + u1Tos) A + kn)™L + 2Ty + 9.Ton] + Py [1oT0s (A + kn)™t 4
+ vOTo-n] - (uopls + u1p03> (1 + kn)—l — vopln - vlpon = 0

p1 = (Pl + 1 To) (v — 1) /1 (6.1)

The type of Equations (6.1) is determined by the solution of the inviscid
problem. In particular, the characteristics of (6.1) coilnclde with the char-
acteristics of the inviscid problem.

The transonic reglon (Fig.3) in which wu,, v,, p;, p, and 7, must first
be found 1is bounded by the limiting characteristic gx , the surface of the
body 0K , the axls of symmetry B0 , and the segment pBg of the shock wave
(Dx Dbeing the sonic line). It is necessary to find the solution of (6.1)
with the following boundary conditions: the normal component of v, 1s given
on ¢k [2]; the condition of symmetry on B0 ; the two conditions (5.6) on
the arc FB , whose location 1s known from the solution of the inwviscid prob-
lem; and on gx , whose locatlon 1s also known, a relation between the dif-
ferentials of the unknown quantities appearing in the characteristics of
Equations (6.1) (boundedness of the derivatives on the characteristic Zx ).

The question of existence and uniqueness for such a problem requires fur-
ther conslderation., In the supersonlc reglon (Fx4 the answer to that
question can be obtained by means of an 1nvestigatlon of the possibility of
constructing the flow by the numerical method of characteristics. Assuming
that wu,, v,, p, p, and T, are known on FK , we calculate the flow in the
reglon CFx4 . The essential step 1n the calculation 1s the determination
of pys p1s» T, uy and vp; at point g (Fig.3) from the data &t points F
and ¢ . Along a streamline — the characteristic £I of Equations (6.1),
we may find 4S5,, where S, = p,ps'— yp,p5'. Replacing the differentlal by
a finite increment, we find the value of §,  at point 1 from &, at point
EF , and from values of 5, at polnts I ana ¢ we find §, at point g by
linear extrapolation. From the relations between dp,, dp,, du; and du,;
along the characteristic gg¢ of Equations (6.1) we oﬁtain stili another con-
dition on wu;, v,, p, and p, at point g . Then adding the conditlons (5.6)
we obtain a system of four independent linear algebraic equations for deter-
mining u,, p,, v, and p, at point pg.

The correctness of the flow calculation in the supersonic region allows
us to hope that the boundary-value problem considered above for the transonic
region 1s also corréct.
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7. In the inviscid problem there springs from a point on the contour
where the curvature 1s dilscontlnuous a characteristic 7 , along which the
derivatices of uy, v, p, p and T  with respect to »n suffer discontinui-
ties (n now being measured normal to 7 and g along [ ). If viscosity
is consldered, there exists, Just as in the case of a shock wave, a transi-
tion region outside of which expansions of the form (2.1) are assumed to be
valid. The terms of order ¢ 1in these expanslons may evidently suffer dis-
continuities on . From the point of intersection of 7 with the shock
wave (BC’ (Flg.l) two characteristics emerge into region 1, for which
dy/dx = + m~*, with m = (¥.® ~ 1)¥2, and near which there exists transition
region outslde of which the solution 1s represented by expansions of the
form (2.1), and inside by expansions of the form

f=fo+etm s +..., fo=const, mn=net (7.1

Let us use the symbols {f} = (Nysico— Nym_wi for the coefficients of
the expansion (7.1) there are the relations

{Po} = {po} = {ue} = (v} = 0, {p = v {p1}y  {vi}po 4 {ps} v, = 0, {u} =10
Hence it follows that

{py + v} = {ppg™t — TP 7YY = 0

that 1s, it 1s found that the Formulas (4.4) are valid in the presence of
discontinuities in the terms of order ¢ in region 1 (Fig.l).

A8 x - — «» the transition regions near the characteristics determined
by Equations dy/ax= + m~! broaden, so that the characteristic directions
must be excluded in conditions (4.3).

8, In conclusiun We note that the method of inner and outer expansions
was applied by Germain [4] to obtailn conditlons on the shock wave, but he
expanded the inner solution in powers of ¢? and so missed the terms of
order ¢ that are of 1nterest in the present problem,

The author thanks S.V. Fal'kovich ahd S.A. Kaganov for discussion of the
problems consldered here,
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