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We consider the plane and axisymmetric problems of flow of a uniform hyper- 
sonic stream of viscous perfect gas past a blunt-nosed body in the case when 
the ordinary boundary-layer theory is inadequate, and higher approximations 
in the solution of the Navier-Stokes equations are required. Ey means of the 
well-known method of Inner and outer expansions we obtain the conditions on 
the bow shock wave for the second aooroxlmation to the solution outside the 

boundary layer (the first approximation being the 
inviscid flow). We consider the boundary-value prob- 
lem arising in the determination of the secondappro- 
ximatlon. 

Fig. 1 

In flight at high altitude with very great speed 
the continuum theory becomes invalid, and it is 
necessary to use the kinetic theory of gases. How- 
ever, so long as the Knudsen number remains less 
than 0.15, most aerodynamic problems can be treated 
by means of the Navler-Stokes equations taking Into 
account slip at the surface of the body (see the 
works of Street, Sherman and Talbot, and others in 
Cl]). Under these conditions the boundary-layer 
theory is inadequate, and the next approximation to 
the solution of the Navier-Stokes equations must be 
considered. A systematic review of second-order 
effects is given In the work of Van Dyke [2], who 
used the well-known method of Inner and outer solu- 
tions. In particular, he found the boundary condl- 
tlons on the body for the determination of thesecond - . . . 

approximation outsl.ie the boundary layer. In the present work we ODtaln tne 
boundary conditions on the bow shock wave for the second approximation by 
constructing the asymptotic representations of the solutions of the Navier- 
Stokes equations outside and Inside the region of the bow wave and their 
matching. 

1. We consider the plane or axlsymmertic problem of hypersonic flow of 

a uniform stream of viscous perfect gas past a contour (Fig. 1). 

Here AOA’ is the contour of the body. Region 4 Is the boundary layer, 

and region 2 the shock wave, which Is regarded as a region of large gradients 

of gas properties. We assume that the smooth contour AM’ consists of 
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analytic arcs, the arc of the contour being 

to the limiting characteristic (see Section 

Its equation of state Is p = RpT where p 

an analytic cUrve from point 0 

6); the gas is perfect, that is, 

is the pressure, P the density 

T the absolute temperature, and R the gas constant; the specific heats 

at constant pressure cp and volume oV are constant; the internal energy 

1s e=o,T; the coefficients of viscosity 9 and h are functions only 

of T; the Prandtl number o Is constant; the gas flow is described by 

the Navler-Stokes equations; and the flow regime Is lamlnar. 

We denote the parameters of the undisturbed stream by the subscript m , 
$0 that M, Is the free-stream Mach number, and V, its speed. For w,X - 0 

region 2 collapses i?to the surface CBC' , and region 4 disappears. At hyper- 

sonic speeds (lr/%, > 1) regions 2 and 4 are always distinct [ 21, and the 

characteristic temperature and enthalpy in regions 3 and 4 are li” _oC,l and 

II,’ respectively; the radius of curvature c of the bod;l and the radius of 

curvature of the shock wave at the points B and 0 are of the same order. 

We introduce a curvilinear system of coordl- 

nates s, n (Fig.2). Here s and n are meas- 

ured along the arc BC and along the normal to 

it. Then if lengths are referred to the quantity 
a , the gas velocity to U, , the pressure to 

PJL= I the density to Pm, the temperature to 

v,ac-’ P ’ the entropy and enthalpy of the gas to 

cp and u,” respectively, and the coefficients of 

viscosity to the value of p at T = Umaapel, 

then the equations of continuity, momntum and 

energy, and tie equations of state, assume in the cho- 

Fig. 2 sen coordinate system the following form [2] : 
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Here u and v are the components of velocity in the directions of 

increasing s and s respectively; r = r(s) and 9 = 8(s) are the distance 

from the angle of inclination of the tangent with the x-axis (Fig.2) for a 

point on the arc CBC', and k = k(a) Is its curvature, referred to a-'. 

The subscripts s and n on a functional symbol indicate differentiation. 

For the plane case j = 0 and for the sxlsymmetric case j = 1 . For a gas 
3 with p = const the small parameter e = R; , where .R_ Is the Reynolds 

number of the undisturbed stream. 

2, To find the solution of the problem In the boundary layer (region 4 

In Flg.l), Van Eyke [2] used the method of Inner and outer expansions In the 

parameter c. The first terms of the inner expansion In region 4 give the 

usual boundary-layer theory, and the next ones account for second-order 

effects (2n particular, slip and temperature jump at the body surface). For 

the flow dn region 3 Van Qke obtalned asymptotic expansions of the form 

f = p, (s+ n) + EF, (a, n) + . . . (f= P9 P, u, *, T) (2.4) 

To flnd the coefficients F1 in (2.1), knowledge of which is required to 

improve the results of boundary-layer theory, It Is necessary to give the 



component of velocltg normal to the surface of the body, and relations be- 

tween the E’, on the bow shock wave CEC’ (Fig ,l) . . The first is avallable 

in [2] and a derlvatlon of the conditions on the shock wave follows here- 

after. 

3. For the solution of this problem we use the method of inner and outer 

expansions. In regions 1 and 3 (Fig.1) we use for U, u, P, p and T 

expansions of the form (2.1) (the outer solution). InsIde the shock wave 

(region 2 of Fig.1) we use expanslons of the following sort (the Inner solu- 

tlon): 
I = frJ (s, ,I-) -t ef1 (s, 11:) + . . . ) i\i zzz TIE-2 (3.1) 

This type of expanslon Is suggested by consideration of the one-dimen- 

slonal case, and by the expanslons (2.1). Thus let us assume that for n-+ 0 

the functions Fo, F, , . . . are representable asymptotically by power series; 

then for small n we obtain from (3.1) 
(3.2) 

/ = I&o (es) + p’,, (s) R + * * ’ 1 -t- E I&, (s) t F,, (s) n + . . .] + . , . 

After transforming to fl and regrouping terms in the series (3.2) we have 

/ = U$Ml (s) I + E l&J b)l + 22 IF,, (s) + I?,, (sp-I + . . . (3.3) 

This equation must represent f for large N and small n (the matching 

conditions). 

It follows from (3.3) that the Inner expansion has the form (3.1) and 

fUIC“ f,, - 0, N--+&-cc (3.4) 

We note that just as for an Incompressible fluid [3] the solution of the 

Navier-Stokes equatlons, as Is shown by consideration of special examples, 

consists of two ?arts, one represented asymptotically by a Power series in 

E and the other having exponential character with respect to s-l. There- 

1’01~ the condltlons (3.4) may be written more accurately for large N In 

ti1c for111 to (s ,371 - Fo, (9 ) + exponential terms, 4, (s ,m) _ 7, o (s 1 + exponen- 

tial terms, “YZ (s J) _ r”,O (s) + r,, (s)l’j + exponential terms, and so on. (The 

Yunctlons l;iil (s) are different for N + f m .) 

4, We derive the equations for the coefficients F, in region 1 (Fig.1). 

&re It is convenient to use Carteslan coordinates X, y, H . The expansion 

Ls taken in the form 
(4-Q 

J’ = Ijo (X, ?J, 2) + ‘JQ(& 7J, 2) + . . ., 7’ = I’, (x, y, z) + ET1 (x,y,z) + . . . 

1’ = po (cc, 3, 2) + t’l’l (d., YJ, L) + . . ., 1’ = A-0 (.T, ?/, 2) + &VI (z, y, 2) + . . . 

Here v(u,,uy , u, ) is the velocity vector. Substituting (4.1) into the 

equations of continuity, momentum and energy, and taking into account the 

fact that the viscous terms do not affect the terms in E , while the terms 

with subscript zero are constant, corresponding to the uniform stream at 

2 :_‘n , we obtain 
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We require that. 

Vl, PM Pl --) 0 as x-3-00 

J-n any direction different from the characteristic one 

From (4.2) and (4.3) we obtain 

(4.3) 

(see Section 7). 

Pl Pl %, th av av 
P1=--1x, y-=---, -_+=__2_~=o 

PO PO i3X dY 3X az 
(4.4) 

that Is, In the plane and axlsynrmetric cases curl V,= 0 and V,= grad cp , 
where cp satisfies Equation 

-m2ag+;g+&o, m = (Mm2 - 1)“’ (4.5) 

We now show that the condition (4.3) Imposes no llmltatlons on v, on a 

finite portion of the arc CRC' (Flg.1). This is most easily obtained for 

the plane case. Here a/al = 0 and the general solution of (4.5) Is 

q = g,(x + my) + B,(x -my) , where B, and Q2 are determined If v, Is 

given on CBC' (Fig.1). 

The condition (4.3) Is satisfied If gI' (5 oo) =gs'(fm)= 0. The prime 
Indicates differentiation. The same result Is obtained also for the axlsym- 

metric case If the solution of (4.5) Is represented by the well-known formula 

of Volterra. 

Consequently the condition of decay of disturbances In region 1 as y--m 

(Flg.1) leaves u1 (a,n) and u,(s,n) arbitrary on the finite segment CRC', 

whereas p, and p,are related by the condition (4.4), which we write In the 

form 
Pl 1 PO = 7% 1 Pot Pl = - (UI Cos 0 + ul sin 0) (4.6) 

5. We consider the flow Inside the shock wave (region 2 of Flg.1). The 

expansions for the solution are taken In the form (3.1) 

P = PO (s, N) + &PI 6, N) + . . . . , T = T, (s, N) + eT, (s, N) + . . . 

P = PO (s, N) + Ep1 (s, N) + - . . , ‘U=U&N)+eul(s, N)+... 
v = zr, (*v, N) + ev, (s, N) + . . . , N = ns+ (5.1) 

Transforming to N and s In Equations (1.1) to (1.4) we obtain the sys- 

tem 
(P@, = 0 (89 PVU, = (pUN)N + 0 (e2b 

Pvv, + PN = [(A + 2p) 'NlN + o (8") (5.2) 
puTN - vpN = - 0-l @TN)N + (A f 2~) ZX,~ + puN2 -I- 0 (e”) 

p = r(r - 1) / 71 pr 
The curvature of the shock wave affects only i;erms of order ga In (5.2), 
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so that the equations for the coefficients with subscripts 0 and 1 are 

obtained just as in the one-dimensiomal case, if n, = 0 . We give only the 

equations from which it follows that nOH= m!,,= 0 . From the relations 

pcz2c = a = const, ag*jy = (~~U~~~~, cl0 = PLO (TLJ 

it follows that 

Since 0 # pee m , then ncN+ 0 as N - f m only In the case uO,, 2 0 . 
Bar I.+,,, using mOn = 0 , we obtain aulN = (ecu,, ),, ; hence under the con- 

dition that u,N* 0 as N 4 f 0~ it follows that uIN = 0 

We introduce for convenience the symbol $13 = (I),,_,,,- (J')~_,_, . Then 

for the one-dimensional problem there exist the well-known relations 

(PfJ) = 0, (PU2 + $9 = 0, 
1 
_LX_+;j=o 
r---1 P (5.3) 

which follow simply from the conditions 

VN' PN PN' TN --, 0, N-t-&cc 

We may therefore expect that the relationS ConneCting PO 3 Pi ) PO ) Pl 9 
U, > ‘41, ub and ‘JI as Ndfm will be obtained from (5.3) upon substitu- 

ting (5.1) and equating coefficients of like powers of e . They have the 

form 

(%) = 0, @olJo2 + PO> = 0, 
i 
LB+ $} = 0 
7-l PO 

* {UJ = 0, {2%P& + V,2Pl + Pl) = 0, 

{P&} = 0 (5 4) 

{PO”1 + Plqd = 0 

T 
i t 

- ~-~)+0+0 
r---1 PO (5.5) 

The author has also obtained (5.4) and (5.5) directly from the equations 

for the quantities with subscripts 0 and 1 and the conditions that the 

derivatives of those quantities tend to zero as N-i m 

(see (3.4)). The relations (5.4) are the usual condi- 

tions on a shock wave for an inviscid stream. In the 

relations (5.5) the quantities n1 and u1 are arbitrary 

its N---m, but pi and p1 are determined in terms of 

them by means of (4.6). If we eliminate ur and v1 from 

15.5) as N - - - , we obtain two relations connecting 

Ul' ul, pi and pi as N - + m fn -) 0), that is, the 

desired relations on the shock wave. 

Omitting the rather easy computations, we give the 
pig. 3 final result 

n1 MS 0 + VOVl + IT ! (7 - $)I jpIPo-l - PoPo-ZPJ = 0 (5.6) 

Et1 COSQ - p. sin Bv, + (voz - v. sin 8) p1 + p1 = 0 

All quantities are taken on approaching CBC' from the side of region 3 

(Fig. 1). 
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6. The equations for the coefficients with subscript I in Expansions 

(2.1) in region 3 (Flg,l) are actually obtained from the equations of lnvls- 

cld flow (the viscous terms being of order ca ) and have the form 

[(r + n cos 8)’ (PO% + P141, + [(I + W (r + n cos Qi (povl + pIvo)],= 0 

Uo% + uld (1 + JW-l + q,uln + vlu,,, + k (1 +vkn)-l(u,vl + u,v,,) + 

+ (1 + k4-l (Po-1P,8 - PIPO-"PO,) = 0 

(~1, + WJ,) (1 + W-l + q,~n + v,v, - k (1 + kn)-1-2uou, + 

+ PlnPO-l - PlPo-2Po, = 0 

PO [(u,T,, + ~1’16s) (1 + W-l + v,i;, + vlTon1 + p1 [noTo, (1 + kn)-l + 

+ voTo,] - (uoPls + zwo,) (1 + kn)-l - vopln - V,Pon = 0 

Pl = (POT1 + PJO) (7 - 

The type of Equations (6.1) is determined by 

problem. In particular, the characteristics of 

acterlstics of the lnviscid problem. 

the solution of the 

(6.1) coincide with 

(6.1) 

lnviscld 

the char- 

The transonlc region (Flg.3) in which u,, ul, pi, pi and T, must first 

be found is bounded by the llmltlng characteristic EK , the surface of the 

body OK , the axis of symmetry BO , and the segment BE of the shock wave 

(DK being the sonic line). It is necessary to find the solution of (6.1) 

with the following boundary conditions: the normal component of v, Is given 

on OK [2l; the condition of symmetry on BO ; the two conditions (5.6) on 

the arc EB , whose location is known from the solution of the lnvlscld prob- 

lem; and on EK , whose location Is also tiown, a relation between the dlf- 

ferentials of the unknown quantities appearing In the characteristics of 

Equations (6.1) (boundedness of the derivatives on the characteristic EK ). 

The question of existence and uniqueness for such. a problem requires fur- 
ther consideration. In the supersonic region C.KA the answer to that 
question can be obtained by means of an Investigation of the possibility of 
constructing the flow by the numerical method of characteristics. Assuming 
that uI, ul, p1 pI and T, are known on KK , we calculate the flow In the 
region CEKA . The essential step In the calculation Is the determination 
of PI f PI 9 T, 1~~ and v at point K (Flg.3) from the data at points E 
and C . Along a streamilne - t_hf chara_cterlstic EI of Equations (6.I), 
we may find &S, , where S, = Replacing the differential by 
a finite Increment, we find t kp~a~u~“~!! S at point I from S E * at point 
K , and from values of S, at points 
linear extrapolation. 

I an& G we find S, at pikit d; by 
From the relations between dp dP, > au 

along the characteristic flG of Equations (6.1) we obtain still another’con- 
ditlon on U, , v,, p, and p, at point H . Then adding the condltlons (5.6) 
we obtain a system of four Independent linear algebraic equations for deter- 
mining u,, p,, vl and p, at point H. 

The correctness of the flow calculation In the supersonic region allows 
us to hope that the boundary-value problem considered above for the transonlc 
region Is also correct. 
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7. In the lnvlscld problem there springs from a point on the contour 
where the curvature Is discontinuous a characteristic L 
derlvatlces of u, v, p, p 

along which the 
and T ,wlth respect to n 

ties (n now being measured normal to L 
s;ffer dlscontlnul- 

Is considered, there exists, 
and s along L ). If viscosity 

just as In the case of a shock wave, a transl- 
tlon region outside of which expansions of the form (2.1) are assumed to be 
valid. The terms of order E In these expansions may evidently suffer dls- 
contlnultles on 

4' 
From the point of Intersection of L with the shock 

wave CBC' (Fig.1 two characteristics emerge Into region 1, for which 
d&r = i m-l, with m = (M,~ - I)lia, and near which there exists transition 
region outside of which the solution Is represented by expansions of the 
form (2.1), and Inside by expansions of the form 

f = f. + sfl h, s) + . . ., f. = const, q = n&-l (7.1) 

Let us use the symbols ff) = (f)+,+,- (f)+,-,; 
the expansion (7.1) there are the relations 

for the coefficients of 

{PO) = (PO) = (a01 = (uo) = 0, (PI, = ro" (P,), (sl PO 4: (P3 u0 = 0, (a3 = 0 

Hence It follows that 

that Is, It Is found that the Formulas (4.4) are valid in the presence of 
dlscontlnultles In the terms of order c in region 1 (Fig.1). 

As x+--m the transition reglons near the characteristics determined 
by Equatldns dy/dx= f m-l broaden, so that the characteristic directions 
must be excluded In conditions (4.3). 

8. In conclusion we note that the method of Inner and outer expansions 
was applied by Germaln [4] to obtain conditions on the shock wave, but he 
expanded the Inner solution In powers of e2 and so missed the terms of 
order E that are of Interest In the present problem. 

The author thanks S.V. Fal'kovlch and S.A. Kaganov for discussion of the 
problems considered here. 
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